From Lithium Bis(trimethylsilyl)amide with Cyanoamine into Triazine Compounds: Synthesis and Structures of Lithium 6- ((Trimethylsilyl)amido)-2,4-bis(dimethylamino)[1,3,5]triazines and Their Manganese and Cobalt Complexes

Meisu Zhou,* Xiaoli Qiao, Hongbo Tong, Tao Gong, Mei Fan, Qiaokun Yang, Qingchen Dong, Jianbin Cha[o,](#page-4-0) Zhiqiang Guo, and Diansheng Liu*

Institute of Applied Chemistry, Shanxi University, Taiyuan 0[30](#page-4-0)006, People's Republic of China

S Supporting Information

[AB](#page-4-0)STRACT: [Addition rea](#page-4-0)ctions of lithium bis(trimethylsilyl)amide with dimethylcyanamide lead to novel lithium salts of 6-((trimethylsilyl)amido)-2,4 bis(dimethylamino)[1,3,5]triazines $[LLi(D)]_2$ (L = NC(NMe₂)NC(NMe₂)- $NC(NSime_3)$; $D = Me_2NCN(1)$, $Et_2O(2)$ and to the Mn and Co complexes $[LL'M]$ $(L' = N{N(SiMe_3)C(NMe_2)}$; $M = Mn(3)$, $Co(4)$; the structures of crystalline 1, 3, and 4 are reported. Their formation involves trimethylsilyl shifts, ring formation, and unusual $Me₂NSiMe₃$ elimination.

■ INTRODUCTION

1,3,5-Triazine heterocyclic π -conjugated systems are attractive and versatile for their structures and applications in medicinal chemistry, materials chemistry, and organic synthesis. 1^{-3} Accordingly, the 2,4,6-trisubstituted 1,3,5-triazines have attracted much interest.4−¹¹ 2,4,6-Triphenyl-1,3,5-triazine de[riv](#page-4-0)atives have been largely explored, 12 and pyridyl-substituted 1,3,5-triazines such as [2,4](#page-4-0),6-tris(2-pyridyl)-1,3,5-triazines have been extensively referenced.^{13−16} [Re](#page-4-0)cently, lanthanide 2,4,6tris(2-pyridyl)-1,3,5-triazine complexes with visible light luminescence were reported.^{[6](#page-5-0)} [2,4](#page-5-0),6-Trimercapto-1,3,5-triazine can be used in wastewater treatment to remove heavy metals¹ and also to prepare polynucl[ea](#page-4-0)r trithiocyanurato-bridged metal complexes bearing bidentate chelating N and S heterocycles.^{1[7](#page-4-0)} Triprotic 2,4,6-tris(organoamino)-1,3,5-triazenes are promising potential multisite ligands.¹⁸ Moreover, several 1,2,4-triazin[es,](#page-5-0) bi(1,2,4-triazines), or transition-metal complexes with disubstituted triazine-based liga[nds](#page-5-0) and bi(1,3,5-triazine)ligands were also prepared.^{3,19−21} However, new and effective syntheses of 1,3,5-triazine heterocyclic rings under mild conditions are still of significan[c](#page-4-0)[e](#page-5-0) [in](#page-5-0) modern organometallic and organic chemistry; moreover, organometallic derivatives of triazine are scarce and the numbers of accessible heterocyclic skeletons are still limited.

In previous publications, the reactions of nitriles free from α hydrogen with reagents such as $LiCH(SiMe₃)₂$ have been shown to yield under mild conditions the corresponding metal 1-azaallyl or β -diketiminate²² or triazines by the cyclotrimerization of organonitriles.^{23,24} These nucleophilic reactions may involve C–C coupling, [1,3](#page-5-0)-migration of the SiMe3 group from C to N, or eliminati[on o](#page-5-0)f $Li[CHR₂]$. Recently, we described the reactions of N-centered anions with nitriles free from α -hydrogen at a molar ratio of 1:1 or 1:2 which can give guanidinates or 1,3,5-triazapentadienyl ligands e.g. as $[Li{N (R)C(R')NC(R')N(SiMe₃)$]₂ (where R = Ph, 2,6-Pr₂C₆H₃, SiMe₃, and $R' = NMe_2$, 1-piperidino) as their metal complexes. The N-centered nucleophilic reactions involved $1,3-Me_3Si$ migrations from N→N, isomerization, or concomitant N−C bond formation.^{25−29} Very recently, alkyl- and arylimidoylamidines were formed via the condensation of nitriles and amides under mild con[dit](#page-5-0)i[on](#page-5-0)s promoted by a coordinatively unsaturated bis[nickel(II) hydroxy] complex.³⁰

As a continuation of our study of the reactivities of organic nitriles free from α -hydrogen with [li](#page-5-0)thioamides, we now describe our initial findings on the addition reactions of $\text{LiN}(\text{SiMe}_3)$ ₂ with dimethylcyanamide. The lithium salts of 6- $((\text{trimethylsilyl}) \text{amido})-2,4-\text{bis}(\text{dimethylamino})[1,3,5]\text{triazines}$ $[LLi(D)]_2$ (L = NC(NMe₂)NC(NMe₂)NC(NSiMe₃); D = $Me₂NCN$ (1), $Et₂O$ (2)) and thereby their Mn and Co complexes [LL'M] $(L' = N{N(SiMe₃)C(NMe₂)}₂; M = Mn$ (3), Co (4)) were obtained. Such reactions may implicate a series of silicotropic rearrangements and an unusual elimination of Me₂NSiMe₃. Considering the rare examples of the monomeric monolithiated $(THF)_3$ Li $(Ph)_2(Bu^tBu^n)C_3N_3^{24}$ dimeric dilithiated $(\text{THF})_6\text{Li}_4[(\text{RN})_2(\text{RNH})C_3\text{N}_3]_2^{1.18}$ and trilithium tris(trimethylsilylamin[o\)](#page-5-0) $[(\text{Tr}^{TMS3})_2 \text{Li}_6(\text{THF})_8]$ ·2THF and $[(\text{Tr}^{TMS3})_2 \text{Li}_6(\text{DME})_4]^{31}$ $[(\text{Tr}^{TMS3})_2 \text{Li}_6(\text{DME})_4]^{31}$ $[(\text{Tr}^{TMS3})_2 \text{Li}_6(\text{DME})_4]^{31}$ triazinate complexes in the literature, the novel dimeric monolithiated adduct 1 is expected to be a good addition [to](#page-5-0) the family of 1,3,5-triazine ligands. The new heterobicyclic C_3N_6M ring system also reveals the diversity of addition reactions of $LiN(SiMe₃)$, with a nitrile and demonstrates its synthetic utility as a ligand transfer reagent.

Received: July 29, 2011 Published: April 9, 2012

EXPERIMENTAL SECTION

General Remarks. . All manipulations were carried out under an atmosphere of argon using standard Schlenk techniques. Solvent was purchased from commercial sources. Deuterated solvents C_6D_6 were dried over activated molecular sieves (4 Å) and vacuum-transferred before use. Diethyl ether was dried and distilled from sodium/ benzophenone and stored over a sodium mirror under argon. Dichloromethane was distilled from activated molecular sieves (4 Å) or CaH₂. The lithium amide $\mathrm{LiN}(\mathrm{SiMe}_3)_2$ was easily accessible via the lithiation of $1,1,1,3,3,3$ -hexamethyldisilazane with LiBuⁿ in hexane. LiBuⁿ, 1,1,1,3,3,3-hexamethyldisilazane, Me₂NCN, MnCl₂, and CoCl₂ were used as purchased from Alfa Aesar. Glassware was oven-dried at 150 °C overnight. The NMR spectra were recorded on a Bruker DRX-300 instrument, and solvent resonances were used as the internal references for $^1\mathrm{H}$ spectra and $^{13}\mathrm{C}$ spectra. IR spectra were recorded on a Shimadzu FTIR8400S instrument. Electron impact mass spectra were taken from solid samples using a GCT-MS Micromass UK instrument. Magnetic susceptibility measurements were carried out on samples with polycrystalline compounds tightly packed and sealed in a capsule at 300 K using a Quantum Design MPMSXL5 SQUID magnetometer. Diamagnetic corrections were applied to the observed paramagnetic susceptibilities using Pascal's constants.³² Melting points were measured in sealed capillaries and are uncorrected. Elemental analyses were carried out using a Vario EL-III analy[ze](#page-5-0)r (Germany).

Preparations. [LLi(Me₂NCN)]₂ (1; L = NC(NMe₂)NC(NMe₂)NC-(NSiMe₃)). Me_2NCN (0.68 mL, 8.40 mmol) was added to a solution of $\text{LiN}(\text{SiMe}_3)_2$ (0.35 g, 2.10 mmol) in Et₂O (20 cm³) at −78 °C. The resulting mixture was warmed to ca. 25 °C and stirred overnight. The mixture was concentrated in vacuo to ca. 10 cm3 and left at −25 °C for several days to give colorless crystals of 1 (0.49 g, 71%). Mp: 102−104 °C. Anal. Calcd for $C_{26}H_{54}Li_2N_{16}Si_2$: C, 47.25; H, 8.24; N, 33.91. Found: C, 47.08; H, 8.32; N, 33.96. ¹H NMR (C₆D₆): δ 0.40 (s, 9H, Si(CH₃)₃), 2.96 (s, 18H, N(CH₃)₂). ¹³C NMR (C₆D₆): δ 1.98 (Si(CH₃)₃), 35.7 $(N(CH_3)_2)$, 130.7 $(N\equiv CN)$, 164.3 (ipso-C-NSiMe₃), 170.4 (ipso-C-NMe₂). IR (KBr, cm⁻¹): 2945, 2933, 2900, 2864, 2216, 1566, 1525, 1442, 1390, 1240, 1220, 1078, 1054, 879, 842, 813, 748. ²⁹Si NMR (C_6D_6): δ – 10.88 ppm. ⁷Li NMR (C_6D_6) : δ 2.03 ppm.

 $[LLi(Et₂O)]₂$ (2; L = NC(NMe₂)NC(NMe₂)NC(NSiMe₃)). Me₂NCN (0.50 mL, 6.24 mmol) was added to a solution of $LiN(SiMe₃)₂$ (0.35) g, 2.08 mmol) in Et₂O (20 cm³) at −78 °C. The resulting mixture was warmed to ca. 25 °C and stirred overnight. The mixture was concentrated in vacuo to ca. 10 cm³ and left at -25 °C for several days to give colorless crystals of 2 (0.45 g, 65%). Anal. Calcd for $C_{28}H_{62}Li_2N_{12}O_2Si_2$: C, 50.27; H, 9.34; N, 25.13. Found: C, 50.39; H, 9.38; N, 25.04. ¹H NMR (C₆D₆): δ 0.63 (s, 9H, Si(CH₃)₃), 3.03 (s, 18H, N(CH₃)₂), 1.12−1.17 (t, Et₂O), 3.28−3.35 (m, Et₂O). ¹³C NMR (C_6D_6) : δ 1.98 (Si(CH₃)₃), 35.9 (N(CH₃)₂), 15.1, 65.8 (Et₂O), 166.1 (ipso-C-NSiMe₃), 174.6 (ipso-C-NMe₂). IR (KBr, cm⁻¹): 2958, 1649, 1637, 1604, 1523, 1427, 1411, 1309, 1261, 1056, 1008, 958, 833, 702, 663, 592. ²⁹Si NMR (C₆D₆): δ –12.12 ppm. ⁷Li NMR (C₆D₆): δ 1.55 ppm.

[LL'Mn] (3; L' = $N\{N(SiMe_3)C(NMe_2)\}$ ₂). Me₂NCN (0.40 mL, 5.00 mmol) was added to a solution of $\text{LiN}(Si\text{Me}_3)_2$ (0.42 g, 2.50 mmol) in Et₂O (20 cm³) at −78 °C. The resulting mixture was warmed to ca. 25 $^{\circ}$ C and stirred overnight. MnCl₂ (0.16 g, 1.25 mmol) was added at −78 °C. The resulting mixture was warmed to ca. 25 °C and stirred for 24 h. The volatiles were removed in vacuo, the residue was extracted with dichloromethane, and the extract was concentrated in vacuo to ca. 15 cm^3 and set aside at ambient temperature for several days, yielding colorless crystals of 3 (0.22 g, 37%). Mp: 105−107 °C. Anal. Calcd for $C_{22}H_{51}MnN_{11}Si_3$: C, 43.39; H, 8.44; N, 25.30. Found: C, 43.15; H, 8.52; N, 25.33. $\mu_{\text{eff}} = 1.99 \mu_{\text{B}}$. IR (KBr, cm⁻¹): 2925, 2864, 1529, 1388, 1299, 1213, 1051, 806, 700, 570, 476. UV−vis (THF, nm): λ_{\max} 219. MS (EI; *m/z* (%, assignment)): 254 (4, [L + H]⁺), 210 (100, [LH – NMe_2]⁺), 195 (67, [LH – NMe₂ – Me]⁺), 44 (18, [NMe₂]⁺).

[LL'Co] (4; L' = N{N(SiMe₃)C(NMe₂)}₂). Me₂NCN (0.32 mL, 4.00 mmol) was added to a solution of $\text{LiN}(\text{SiMe}_3)_2$ (0.33 g, 2.00 mmol) in

Et₂O (20 cm³) at −78 °C. The resulting mixture was warmed to ca. 25 °C and stirred overnight. CoCl₂ (0.13 g, 1.00 mmol) was added at -78 °C. The resulting mixture was warmed to ca. 25 °C, stirred for 2 h, and filtered. The filtrate was concentrated in vacuo to ca. 10 cm^3 , yielding purple crystals of 4 (0.29 g, 59%). Mp: 109 °C dec. Anal. Calcd for $C_{22}H_{51}CoN_{11}Si_3$: C, 43.11; H, 8.39; N, 25.14. Found: C, 43.13; H, 8.42; N, 25.22. μ_{eff} = 2.26 μ_{B} . IR (KBr, cm⁻¹): 2979, 2945, 2896, 2871, 2864, 2833, 1541, 1473, 1440, 1359, 1288, 1245, 1041, 979, 912, 842. UV−vis (THF, nm): λ_{max} 225. MS (EI; *m/z* (%, assignment)): 359 (8, $[L' + Co]^+$), 301 (2, $[L' + H]^+$), 257 (54, $[L'H - NMe_2]^+$), 73 (32, $[Sime₃]$ ⁺), 44 (15, $[NMe₂]$ ⁺).

X-ray Crystallography. X-ray diffraction data for 1, 3, and 4 were collected on an Bruker SMART APEX diffractometer/CCD area detector using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Crystals were coated in oil and then directly mounted on the diffractometer under a stream of cold nitrogen gas. The reflections were collected by using the ω scan mode. Corrections were applied for Lorentz and polarization effects as well as absorption using multiscans (SADABS).³³ The structures were solved by direct methods (SHELXS-97).³⁴ The remaining non-hydrogen atoms were then obtained fr[om](#page-5-0) the successive difference Fourier map. All non-H atoms were refined [wit](#page-5-0)h anisotropic displacement parameters, while the H atoms were constrained to parent sites, using riding modes (SHELXTL).³⁵ Crystal data and details of data collection and refinements for 1, 3, and 4 are summarized in Table 1. Compound 1 was refine[d a](#page-5-0)s a racemic twin. Selected bond distances and bond angles are given in Tables 2, 4, and 5.

■ RESULTS AND DISCUSSION

Synthesis and Characterization. Treatment of LiN- $(SiMe₃)₂$ with 3 equiv of Me₂NCN at low temperature in diethyl ether and crystallization of the product from diethyl ether afforded the dimeric colorless crystalline 1:3 adduct 2 in 65% yield (Scheme 1). Addition of $LiN(SiMe₃)₂$ to Me₂NCN in Et₂O, in a 1:4 or 1:5 ratio, yielded the 1:4 adduct 1 (71%) . Similar low-tempe[ra](#page-2-0)ture reactions of $LiN(SiMe₃)₂$ and successively Me₂NCN and anhydrous MnCl₂ or CoCl₂, in a

Scheme 1. Synthesis of Crystalline Complexes

 $[LLi(Me₂NCN)], (1), [LLi(Et₂O)], (2), [LLMn]$ (3), and $[LL'Co]$ (4) $(L = NC(NMe₂)NC(NMe₂)NC(NSiMe₃)$; $L' =$ $N(N(SiMe₃)C(NMe₂))$ ₂)

ratio of 1:2:0.5 in Et₂O, gave monomeric 3 or 4 in 36 or 59% yield, respectively. However, attempts to prepare the similar ligand $(s)/$ metal complex with the formula LL^Te were unsuccessful. Compound 1 is highly air and moisture sensitive and very soluble in diethyl ether, whereas 3 was highly air sensitive and quickly became black on contact with air. The highly diethyl ether soluble complex 4 was relatively inert when exposed to air. The colorless crystalline solids 1−3 and purple 4 gave satisfactory microanalyses and NMR spectroscopic (1 and 2) and X-ray $(1, 3, \text{ and } 4)$ data.

The magnetic susceptibilities for complexes 3 and 4 were determined at 300 K using a SQUID magnetometer. The magnetic moment (μ_{eff}) of the manganese(II) complex 3 was found to be 1.99 μ_B , which lies closer to the low-spin d⁵ value of 1.73 μ _B and is comparable to the magnetic moment of 2.30 μ _B recorded for the pseudotetrahedral manganese(II) β -diketiminate complex $[Mn({\rm NiMe}_3){\rm C}({\rm Ph})\} _2{\rm CH})_2]^{.36}$ However, the magnetic moment of 2.26 μ_B recorded for the cobalt(II) complex 4 is unexpected for a four-coordi[na](#page-5-0)ted cobalt (II) system in a tetrahedral coordination geometry but is comparable to the μ_{eff} of 2.67 μ_{B} recorded for the pseudotetrahedral cobalt(II) complex that has the low-spin ground state reported in ref 37, possibly suggesting that there is a spin-state equilibrium, with the low-spin state populated at very low temperature. The [spin](#page-5-0)-state conversion for tetrahedral Co(II) species with N-donor ligands has also been reported by Dong.³⁸

The proposed pathway for the formation of 1 and 2, outlined in Sc[hem](#page-5-0)e 2, involves successively (i) an attack of the Ncentered nucleophile on R'CN, C-N coupling, and 1,3-Me₃Si migration from N→N, (ii, iii) C−N coupling and isomerization, (iv) nucleophilic attack at a terminal alkene, and (v) an unusual elimination of $Me₂NSiMe₃$ to give the lithium 6- $((\text{trimethylsilyl})$ amido $)-2,4-\text{bis}(\text{dimethylamino})[1,3,5]$ triazine complexes 1 and 2. The formation of 3 and 4, however, took a different course: reaction of lithium bis(trimethylsilyl)amide with dimethylcyanamide in a ratio of 1:2 gave not only the 1:3

Scheme 2. Proposed Pathway for the Formation of 1 and 2

adduct 1 but the 1:2 adduct of the 1,3,5-triazapentadienyl salt, which involves attack of the N-centered nucleophile, $1,3-Me_3Si$ migration, and N−C bond formation.²⁷ Therefore, reactions of $\text{LiN}(\text{SiMe}_3)$ ₂ and successively Me₂NCN and anhydrous MCl₂ (M = Mn, Co) afforded the Mn an[d C](#page-5-0)o complexes 3 and 4, bearing mixed 1,3,5-triazapentadienato and triazine ligands.

Crystal Structures. Structure of 1. An X-ray crystallographic study of 1 reveals that the dimeric molecule (Figure 1,

Figure 1. Molecular structure of 1.

orthorhombic, Fdd2, No. 43) comprises a fused pentacyclic array, having at its core a fused tricyclic boat. The latter has a central N1LiN1′Li′ rhomboid flanked by planar N1LiN6C1 and Li1N1'C1'N6' rings. The boat is puckered and twisted (Figure 2), with angles between the least-squares plane defined by the two terminal and the central $Li₂N₂$ components of 66.8° (metallacycle Li−N1−C1−N6) and 113.2° (metallacycle Li′−

Figure 2. Core of 1 highlighting the twisted-boat structure.

N1′−C1′−N6′). The Li−N bonds are in the range 2.064(7)− $2.180(6)$ Å (Table 2). The four atoms N1, Li, N1', and Li' are

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 1			
$C1-N1$.1.333(4)	$N1-Ii'$	2.105(6)
$C1-N2$	1.359(4)	$C2-N2$	1.329(5)
$C1-N6$	1.376(4)	$C2-N4$	1.341(4)
$N1 - Li$	2.180(6)	$N4 - C5$	1.341(4)
$N6-Li$	2.064(7)	$N6-C5$	1.344(4)
$Li-Ii'$	2.453(11)		
$N1 - Li - N6$	65.04(19)	$Li-N6-C1$	90.3(3)
$N1 - C1 - N6$	114.9(3)	$Li-N1-Ii'$	69.8(3)
$Li-N1-C1$	86.5(3)	$N1 - Li - N1'$	105.3(3)

alternating above and below the mean plane by ca. 0.21 Å, as shown in Figure 2. The two lithium atoms Li and Li′, separated by 2.453(11) Å, are bridged by NSiMe_3 groups, and each is in a four-coordinate [en](#page-2-0)vironment. The endocyclic angles at the nitrogen atoms $(69.8(3)°)$ are narrower than those at the Li atoms $(105.3(3)°)$. These features are similar to those of several other known dimeric N_{exo},N_{endo}-chelating ligand systems such as the dilithiated triprotic 2,4,6-tris- (organoamino)-1,3,5-triazene II (Li−N−Li: = 77.2(7)°, N− Li–N = 102.8(7)^o)¹⁸ and silylaminopyridinate III (Li–N–Li = 75.5(3)°, N-Li–N = 104.5(3)°)³⁹ with an eight-membered $[Li-N_{exo}-C-N_{endo}-]_2$ ring core (Figure 3).

A comparison of some key b[on](#page-5-0)d lengths and angles for complex 1 with those of II and III is presented in Table 3. The Li–N_{exo} bond lengths in 1, II, and III are obviously longer than those of Li−N_{endo}. The fact that both Li−N_{exo} (except [fo](#page-4-0)r **II**) and Li−Nendo lengths in 1 are slightly longer than those in II and III may be due to the essential boat arrangement (rather than centrosymmetric ladder-shaped backbone in II and III) of the [Li−Nexo−C−Nendo−]2 ring core in 1, where both the trimethylsilyl groups at $\rm N_{exo}$ atoms and the fragments attached to lithium atoms are oriented in a cis fashion, resembling that in the amide complexes cis -[Li{ μ -N(SiMe₃)(SiMe₂Ph)}]₂ and $\left[\text{Li}\{\mu\text{-N}(\text{SiMe}_3)\text{Ph}\}\text{-cis}\right]_2\left[\mu\text{-}\{\text{N}(\text{SiMe}_3)\text{Ph}\}\text{Li-cis}\right]_2.\overline{^{40}}$ The bridging Li−N distances in 1, II, and III are almost identical and comparable to the reported Li−N(amido) bon[ds i](#page-5-0)n the dimeric lithium salts of β -diketiminate $[Li\{N(SiMe₃)₂C (Ph)$ ₂CH]₂ (2.095(9) Å),⁴¹ guanidinate $[(Et_2O)LiN(SiMe_3)$ - $C(NMe₂)N(Ph)₂$ (2.057(3) Å),²⁵ and amidinate [Li{ $\mu:\kappa^2$ - $N(R)C(\tilde{C}_6H_4Me^{-4})NPh{(OEt)}_2]_2$ $N(R)C(\tilde{C}_6H_4Me^{-4})NPh{(OEt)}_2]_2$ $N(R)C(\tilde{C}_6H_4Me^{-4})NPh{(OEt)}_2]_2$ (2.058(5) Å).⁴² The bond angle Nexo−Li−Nendo (N1−Li−N[6\)](#page-5-0) in 1 is wider than that in II but narrower than that in III.

Structures of 3 and 4. Crystalline 3 (Figure 4) and 4 (Supporting Information) are the first structurally characterized examples of manganese and cobalt complexes ha[vin](#page-4-0)g 1,3,5 t[riazapentadienato and](#page-4-0) triazine ligands. Compound 4 is essentially isostructural with 3, and therefore their structures are described together as follows. Both 3 and 4 contain one η^2 chelating triazapentadienato and one η^2 -triazine ligand around the distorted-tetrahedral Mn or Co center, with dihedral angle between planes N1MN5 and N6MN10 of 111.3 and 112.4°, respectively. The core units of 3 and 4 comprise a C_3N_3M system with a four-membered M−N_{exo}−C−N_{endo} ring and a six-membered M−N−C−N−C−N metallacycle with similar M−N6 and M−N7 bond lengths and identical M−N1 and M− N5 bond lengths.

The four-membered ring $MN_{\text{exo}}CN_{\text{endo}}$ is essentially planar with a mean deviation of 0.0290 Å in 3 and 0.0266 Å in 4, respectively. The dihedral angles between N6−M−N7 and N7-C22-N11 planes in 3 and 4 are 6.5 and 6.7°, respectively, indicating that the $MN_{exo}CN_{endo}$ ring is almost coplanar with the C_3N_3 ring of the triazine. The π electrons of the exocylic N center allow delocalization of negative charge across the entire C₃N₆ core of the triazine. The M–N6 and M–N7 bond lengths in 3 (Mn−N = 2.098(4), 2.206(4) Å) and in 4 (Co−N = $2.026(3)$, $2.131(3)$ Å) are comparable to those in the corresponding Mn and Co amidinate complexes [{M[PhC- $(NSiMe_3)(NAr)]_2$ ₂·(TMEDA)] (M = Mn, Co; Ar = 2,6- $Me₂C₆H₃$ (Mn–N = 2.177(3)–2.223(2) Å; Co–N = $2.016(2) - 2.246(2)$ Å) (Tables 4 and 5).⁴³ The bond angles of N6−M−N7 in 3 (62.60(16)^o) and 4 (65.54(11)^o) are somewhat larger than tho[se](#page-4-0) in $[M[PhC(NSiMe₃)$ $[M[PhC(NSiMe₃)$ $[M[PhC(NSiMe₃)$ - $(NAr)|_2$ ²/(TMEDA)] (M = Mn, Co; Ar = 2,6-Me₂C₆H₃) $(N-Mn-N = 61.58(9), 61.97(9)$ °; N-Co-N = 62.96(7), $63.66(7)°$).⁴³

The six-membered MNCNCN ring in both 3 and 4 is planar (with a me[an](#page-5-0) deviation of 0.1357 Å in 3 and 0.1336 in 4), with almost identical C−N bond lengths, indicative of π delocalization in the ligand backbone. When the M−N bond lengths are compared among the different six-membered π delocalized systems, the M−N lengths in 3 (Mn−N1 = 2.071(4); Mn–N5 = 2.083(4) Å) and in 4 (Co–N1 = 2.004(3); Co–N5 = 1.981(3) Å) are comparable to those in the asymmetric 1,3,5-triazapentadienyl compounds $[M\{N(Ph)\}$ - $C(NMe_2)NC(NMe_2)N(SiMe_3)_2]$ (M = Mn, Co; Mn–N = 2.074(4)−2.103(4) Å; Co–N = 1.989(2)−1.996(2) Å).²⁸ The Co−N bond lengths in 4 are also similar to those in the 1,5 diazapentadienyl species $[Co[{N(SiMe₃)C(Ph)}₂CH]₂]$ $[Co[{N(SiMe₃)C(Ph)}₂CH]₂]$ $[Co[{N(SiMe₃)C(Ph)}₂CH]₂]$ $(1.994(7), 2.007(6)$ Å).⁴¹ The bond angle N1–Mn–N5 in 3

Figure 3. Complex 1 and its analogues II and III with a $[Li-N_{\text{exo}}-C-N_{\text{endo}}-]_2$ ring core.

Table 3. Comparison of Selected Bond Lengths (Å) and Angles (deg) of 1 and Its Analogues II and III

compd	$a/\text{\AA}$	b/A	c/A	α /deg	β /deg	γ /deg	ref
	2.180(6)	2.064(7)	2.105(6)	65.04(19)	69.8(3)	105.3(3)	this work
П	2.32(2)	2.03(2)	2.07(2)	61.2(5)	77.2(7)	102.8(7)	18
III	2.097(7)	2.042(7)	2.063(7)	67.4(2)	75.5(3)	104.5(3)	39

Figure 4. Molecular structure of 3.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for 3

$Mn-N1$	2.071(4)	C ₂₂ -N ₆	1.319(6)
$Mn-N5$	2.083(4)	$C22-N7$	1.376(7)
$Mn-N6$	2.098(4)	$C18-N7$	1.340(7)
$Mn-N7$	2.206(4)	$C18-N9$	1.336(7)
$C1-N1$	1.345(7)	$C19-N9$	1.337(7)
$C1-N3$	1.326(7)	$C19 - N11$	1.324(7)
$C4-N3$	1.313(8)	$C_{22} - N11$	1.360(6)
$C4-N5$	1.335(7)		
$N1-Mn-N5$	94.43(17)	$N1 - C1 - N3$	127.5(5)
$N6-Mn-N7$	62.60(16)	$N5-C4-N3$	125.9(5)
$Mn-N1-C1$	114.0(4)	$N6 - C22 - N7$	112.3(4)
$Mn-N5-C4$	114.0(3)	$Mn-N7-C22$	89.2(3)
$Mn-N6-C22$	95.6(3)		

Table 5. Selected Bond Lengths (Å) and Angles (deg) for 4

(94.43(17)°) is comparable to those in $[Mn(NPh)C(NMe₂)$ - $NC(NMe₂)N(SiMe₃)$ ₂] (92.85(15) and 93.02(15)[°]),²⁸ whereas N1−Co−N5 in 4 (96.48(12)°) is narrower than in the analogous $\lceil \text{Co}[\{N(SiMe_3)C(Ph)\}_2CH]_2 \rceil$ (102.[7\(2](#page-5-0)) and $103.2(2)°$ ⁴¹ but very similar to those in $[Co{N(Ph)C(NMe₂)}$ - $NC(NMe₂)N(SiMe₃)₂$] (95.94(10), 96.26(10)^o).²

In sum[ma](#page-5-0)ry, we have prepared the first structurally characterized dimeric lithium 6-((trimethylsilyl[\)am](#page-5-0)ido)-2,4 bis(dimethylamino)[1,3,5]triazenes 1 and 2 having a novel triazine scaffold and, further, the monomeric Mn (3) and Co (4) complexes $[LL'M]$ (L = NC(NMe₂)NC(NMe₂)NC-

 $(NSiMe₃), L' = N{N(SiMe₃)C(NMe₂)}₂$). A propo[sed](#page-5-0) pathway involves a series of nucleophilic attacks, trimethylsilyl shifts, ring formation, and unusual $Me₂NSiMe₃$ elimination, for the formation of 1 and 2. Particularly, complexes 1 and 2 are of interest as potential precursors in the synthesis of a wide range of metal compounds. Furthermore, compounds 3 and 4 are rare examples of Mn and Co complexes bearing mixed 1,3,5 triazapentadienato and triazine ligands.

■ ASSOCIATED CONTENT

6 Supporting Information

CIF files giving X-ray crystallographic data for 1, 3 and 4 and figures giving the structure of 4 and $1/\chi$ vs T plots for 3 and 4. This material is available free of charge via the Internet at http://pubs.acs.org. Crystal data are also available from the CCDC (reference numbers 808013, 808015 and 808014).

■ [AUTHOR](http://pubs.acs.org) [INF](http://pubs.acs.org)ORMATION

Corresponding Author

*Tel: +86-351-7010722. Fax: +86-351-7011688. E-mail: mszhou@sxu.edu.cn (M.Z.); dsliu@sxu.edu.cn (D.L.).

Notes

[The authors declare](mailto:mszhou@sxu.edu.cn) no competing fi[nancial in](mailto:dsliu@sxu.edu.cn)terest.

■ ACKNOWLEDGMENTS

We thank the Natural Science Foundation of China (Grant Nos. 20672070 and 20772074), Shanxi Scholarship Council of China (No. 201012), and Shanxi International Education Exchange Association.

■ REFERENCES

(1) Boesveld, W. M.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1999, 4041−4046.

(2) Boesveld, W. M.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. 1997, 2091−2092.

(3) Reid, D. J.; Cull, J. E. W.; Chisholm, K. D. S.; Langlois, A.; Lin, P.-H.; Long, J.; Lebel, O.; Korobkov, I.; Wang, R.; Wuest, J. D.; Murugesu, M.; Scott, J. Dalton Trans. 2011, 40, 5009−5017.

(4) (a) Mooibroek, T. J.; Gamez, P.; Reedijk, J. Cryst. Eng. Commun. 2008, 10, 1501−1515. (b) Mooibroek, T. J.; Gamez, P.; Reedijk, J. Acc. Chem. Res. 2007, 40, 435−444.

(5) Silien, C.; Raisanen, M. T.; Buck, M. Angew. Chem., Int. Ed. 2009, 48, 3349−3352.

(6) Ahmed, Z.; Iftikhar, K. Inorg. Chem. Commun. 2010, 13, 1253− 1258.

(7) Trivedi, M.; Pandey, D. S.; Zou, R. Q.; Xu, Q. Inorg. Chem. Commun. 2008, 11, 526−530.

(8) Medlycott, E. A.; Hanan, G. S. Inorg. Chem. Commun. 2007, 10, 229−233.

(9) Demeshko, S.; Dechert, S.; Meyer, F. J. Am. Chem. Soc. 2004, 126, 4508−4509.

(10) Samaritani, S.; Signore, G.; Malanga, C.; Menicagli, R. Tetrahedron 2005, 61, 4475−4483.

(11) Yua, G.; Liu, C.; Li, G.; Wang, J.; Jian, X. Thermochim. Acta 2011, 514, 51−57.

(12) Lee, C. -H.; Yamamoto, T. Mol. Cryst. Liq. Cryst. 2002, 378, 13− 21.

Inorganic Chemistry Article

(13) Ghumaan, S.; Kar, S.; Mobin, S. M.; Harish, B.; Puranik, V. G.; Lahiri, G. K. Inorg. Chem. 2006, 45, 2413−2423.

- (14) (a) Paul, P.; Tyagi, B.; Bilakhiya, A. K.; Bhadbhade, M. M.;
- Suresh, E.; Ramachandraiah, G. Inorg. Chem. 1998, 37, 5733−5742. (b) Paul, P.; Tyagi, B.; Bilakhiya, A. K.; Dastidar, P.; Suresh, E. Inorg. Chem. 2000, 39, 14−22.
- (15) Folgado, J. V.; Henke, W.; Allmann, R.; Stratemeier, H.; Beltran-Porter, D.; Rojo, T.; Reinen, D. Inorg. Chem. 1990, 29, 2035−2042.
- (16) Zhou, X. -P.; Li, D.; Zheng, S.-L.; Zhang, X.-J.; Wu, T. Inorg. Chem. 2006, 45, 7119−7125.
- (17) Čermáková, S..; Herchel, R.; Trávníček, Z.; Šebela, M. Inorg. Chem. Commun. 2010, 13, 778−781.
- (18) Rivals, F.; Steiner, A. Chem. Commun. 2001, 2104−2105.
- (19) Chu, J.; Chen, W.; Su, G.; Song, Y. -F. Inorg. Chim. Acta 2011, 376, 350−357.
- (20) Branowska, D.; Karczmarzyk, Z.; Rykowski, A.; Wysocki, W.; Olender, E.; Urbańczyk-Lipkowska, Z.; Kalicki, P. J. Mol. Struct. 2010, 979, 186−193.
- (21) Ghassemzadeh, M.; Bahemmat, S.; Tabatabaee, M.; Nassiri, S.; Neumüller, B. Polyhedron 2011, 30, 1760−1766.

(22) Lappert, M. F.; Liu, D.-S. J. Organomet. Chem. 1995, 500, 203− 217. Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Chem. Soc., Chem. Commun. 1994, 2637−2638. Hitchcock, P. B.; Lappert, M. F.; Liu, D.- S. J. Chem. Soc., Chem. Commun. 1994, 1699−1700. Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Organomet. Chem. 1995, 488, 241−248. Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S.; et al. J. Chem. Soc., Dalton Trans. 1999, 1263−1270.

(23) Armstrong, D. R.; Clegg, W.; MacGregor, M.; Mulvey, R. E.; O'Neil, P. A. J. Chem. Soc., Chem. Commun. 1993, 608−610.

(24) Armstrong, D. R.; Henderson, K. W.; MacGregor, M.; Mulvey, R. E.; Ross, M. J.; Clegg, W.; O'Neil, P. A. J. Organomet. Chem. 1995, 486, 79−93.

(25) Zhou, M.-S.; Tong, H.-B.; Wei, X.-H.; Liu, D.-S. J. Organomet. Chem. 2007, 692, 5195−5202.

(26) Zhou, M.-S.; Zhang, S.; Tong, H.-B.; Sun, W.-H.; Liu, D.-S. Inorg. Chem. Commun. 2007, 10, 1262−1264.

- (27) Zhou, M.-S.; Li, P.; Tong, H.-B.; Song, Y.- P.; Gong, T.; Guo, J.- P.; Weng, L.-H.; Liu, D.-S. Inorg. Chem. 2008, 47, 1886–1888.
- (28) Zhou, M.-S.; Song, Y.-P.; Gong, T.; Tong, H.-B.; Guo, J.-P.; Weng, L.-H.; Liu, D.-S. Inorg. Chem. 2008, 47, 6692−6700.
- (29) Zhou, M.-S.; Gong, T.; Qiao, X.-L.; Tong, H.-B.; Guo, J.-P.; Liu, D.-S. Inorg. Chem. 2011, 50, 1926-1930.

(30) Wikstrom, J. P.; Filatov, A. S.; Rybak-Akimova, E. V. Chem. Commun. 2010, 46, 424−426.

(31) Glatz, G.; Motz, G.; Kempe, R. Z. Anorg. Allg. Chem. 2009, 635, 811−814.

(32) Kahn, O. Molecular Magnetism; VCH: New York, 1993.

(33) Sheldrick, G. M. SADABS Correction Software; University of Göttingen, Göttingen, Germany, 1996.

(34) Sheldrick, G. M. SHELX-97, Program for the Solution of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.

(35) SHELXTL, Program for Crystal Structure Refinement; Bruker Analytical X-ray Instruments Inc., Madison, WI, 1998.

(36) Hitchcock, P. B.; Lappert, M. F.; Linnolahti, M.; Sablong, R.; Severn, J. R. J. Organomet. Chem. 2009, 694, 667−676.

(37) Jenkins, D. M.; Bilio, A. J. D.; Allen, M. J.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002, 124, 15336−15350.

(38) Dong, Q.; Rose, M. J.; Wong, W.-Y.; Gray, H. B. Inorg. Chem. 2011, 50, 10213−10224.

(39) Baldamus, J.; Cole, M. L.; Helmstedt, U.; Hey-Hawkins, E.-M.; Jones, C.; Junk, P. C.; Lange, F.; Smithies, N. A. J. Organomet. Chem.

2003, 665, 33−42.

(40) Antolini, F.; Hitchcock, P. B.; Lappert, M. F.; Merle, P. Chem. Commun. 2000, 1301−1302.

(41) Hitchcock, P. B.; Lappert, M. F.; Layh, M.; Liu, D.-S.; Sablong, R.; Shun, T. J. Chem. Soc., Dalton Trans. 2000, 2301−2312.

(42) Hitchcock, P. B.; Lappert, M. F.; Merle, P. G. Dalton Trans. 2007, 585−594.